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Molecular Electronic Excitations and the Minimum Polarizability Principle
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The validity of the minimum polarizability principle upon electronic excitation is studied as a companion

principle of that obtained by Chattaraj and Poddar in the case of the maximum hardness principle. Twelve
diatomic molecules have been selected and, both the hardness and the dipole polarizability for the ground
and excited states have been calculated by means of ab initio density functional calculations using Sadlej's
basis set. It has been found that a molecule is less polarizable in its ground state than in an electronically

excited state of the same spin multiplicity.

1. Introduction

The chemical hardnesg)(has been shown to be a useful
index of reactivity in atoms, molecules, clusters, and sdfids.
The success is in part due to the maximum hardness principle
(MHP)® which states that “there seems to be a rule of nature
that molecules arrange themselves so as to be as hard a
possible”. A theoretical definition of hardness has been provided
in the context of density functional theotyyhere hardness has
been definetlas the second derivative of the electronic energy,
E, with respect to the number of electrom$, for a constant

external pOte tlalz/l r).
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Further, in a finite difference approximation and using
Koopmans’ theorem, a practical equation for the calculation of
hardness has been given
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wheree; andey are the lowest unoccupied and highest occupied
molecular orbital (LUMO and HOMO) energies, respectively.
The relation of the hardness with the HOMQUMO gap is
physically clear. An electronic system with a larger HOMO
LUMO gap should be less reactive than one having a smaller
gap.

A very recent study of the MHP has shown its validity upon
electronic excitation in atomsind moleculeg.In the later work

n=(e, —ey)2

proportional to approximated HartreEock atomic polariz-
abilities. Later on, Fuentealba and Reeand Ghanty and
Ghosh?! using more elaborated calculations of the polarizabilities
found that polarizabilities are inversely proportional to the third
power of the hardness. This was more recently analytically
gemostrated by Sirme-Manso and Fuentealbausing a local
unctional model for the hardness kernel. The relationship
between the hardness and the dipole polarizability is important
because the dipole polarizability is a well-defined observable
which can be measured whereas the hardness is not. On the
basis of this inverse relationship, a minimum polarizability
principle (MPP¥2 has been postulated as a complement to the
MHP. Hence, it is expected that “the natural direction of
evolution of any system is towards a state of minimum
polarizability”. Since a theoretical proof of such a principle does
not exist, the numerical testing of it in different chemical systems
and situations is important.

The electric dipole polarizability is a measure of the linear
response of the electron density in the presence of an infini-
tesimal electric fieldF, and represents a second-order variation
in the energy, viz.,
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The observable quantity is its mean value
(= g0, + 0y + 0ty 4)

the molecular hardness has been calculated for some diatomic In this paper the validity of the MPP upon electronic

molecules in their ground and first excited electronic states, and
it has been observed that for all the molecules studied the
hardness values decrease with electronic excitation revealing
an increase in the molecular reactivity.

excitation will be studied as a companion principle of that
obtained by Chattaraj and Pod#an the case of the MHP.
Twelve diatomic molecules have been selected, and both the
hardness and the dipole polarizability for the ground and excited

It has been for some years Suggested that the hardness i§tates have been calculated. The Computational details are

inversely proportional to the electric dipole polarizability)
PolitzeP showed numerically that atomic hardness is inversely
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presented in section 2. The results are presented and discussed
in section 3. In section 4 the final remarks are presented.
2. Computational Details

The calculation of the dipole polarizability is very sensitive
to the quality of the basis set. To allow for the distortion of the
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TABLE 1: Bond Lengths, Energies, Polarizabilities (in au), and Hardness Values (eV) of Diatomic Molecules

Re (A) config? E (au) Olxx Oyy Ozz | 7 (eV)
H, 0.769 gé 12; —-1.172 4.76 4.76 7.38 5.60 12.0
0.769 00y 12: —0.764 19.2 19.2 154.4 64.1 7.45
0.769 e 32: —0.799 14.3 14.3 92.5 40.4 340
Li, 2.665 gg 123’ —14.983 162.0 162.0 252.01 92.0 2.23
2.665 Og0u 12: —14.938 178.6 178.6 379.9 246.0 1.65
N2 1.108 gg 12; —109.547 10.24 10.24 15.501 1.99 10.8
1.108 Ogrtg Ty —109.250 15.57 17.41 26.57 19.85 2.57
F, 1.398 nﬁ ng 12; —199.577 6.53 6.53 12.65 8.57 7.09
1.398 ;-[3 ”g o‘ﬁ 11, —199.443 6.95 6.84 18.71 10.8 4.13
1.398 ;-,;3 ”g gﬁ 31, —199.464 6.94 6.85 18.74 10.8 6.88
HF 0.928 o Ao —100.481 5.43 5.43 6.72 5.86 10.8
0.928 o?mlot T1 —100.113 34.8 34.8 49.1 39.5 3.91
0.928 0?0t 3I1 —100.118 33.0 35.6 46.7 38.4 4.97
BF 1.274 o2 1IZF —124.703 18.96 18.96 21.13 20.4 6.44
1.274 mfom 11 —124.542 22.03 20.73 45.65 29.5 5.18
1.274 o 8T1 —124.577 18.55 18.25 26.73 21.2 5.60
LiH 1.593 0?1z —8.069 30.35 30.35 29.18 30.0 3.92
1.593 00 3% —7.947 227.0 227.0 80.8 178.0 1090

20nly the configuration of the highest orbitals has been shémergy gap for the majority spin.

TABLE 2: Bond Lengths, Energies, Polarizabilities (in au), and Hardness Values (eV) of Diatomic Molecules Having Triplet
Ground States

Re (A) config? E (au) Ol Qyy Oz | n
O, 1.21 Ty 32; —150.372 8.29 8.29 15.62 10.74 4.84
1.21 ”S 12; —150.311 8.87 7.99 14.85 10.57 0.95
oS 1.48 o 3% —473.404 20.31 20.31 29.94 23.52 3.54
1.48 w1z —473.359 18.76 24.30 29.60 24.22 0.60
S 1.89 Ty 32; —796.416 31.88 31.88 59.37 41.05 2.86
1.89 ”S 12; —796.380 35.61 29.92 57.90 41.14 0.46
NH 1.05 ol 3% —55.237 9.34 9.34 12.47 10.38 4.08
1.05 omlr 1=t —55.156 12.51 8.41 12.82 11.25 0.93
LiN 1.71 w32 —62.131 31.19 20.30 29.62 27.04 1.61
1.71 2 —62.038 31.40 31.40 26.31 29.70 0.60

TABLE 3: Bond Lengths, Energies, Polarizabilities (in au), and Hardness Values (eV) of Diatomic Molecules for Adiabatic
Excitations

Re (A) config E (au) Olxx Oyy Oz (a0 n
O, 1.21 Ty 32; —150.372 8.29 8.29 15.62 10.74 4.84
1.23 né 123’ —150.310 8.89 8.08 15.14 10.70 0.96
N2 1.09 gé 12; 109.546 10.09 10.09 15.07 11.75 10.9
1.21 0gitg Tl —109.240 15.80 16.09 27.23 19.74 1.22
NH 1.05 o’ 3T —55.237 9.34 9.34 12.47 10.38 4.08
1.13 omlr 1Tt —55.152 12.73 8.56 14.27 11.85 0.94

electron density, it is necessary to have very diffuse basis the fundamental theorems of density functional theory is assured.

functions. Hence, in general, the most standard basis sets ar&ll the calculations have been done by solving the keBinam

not well suited for the calculation of the dipole polarizability. equations with the B3LY® exchange-correlation functional,

Therefore, the Sadlej basis Sétwhich are specially constructed ~ which is a hybrid functional including part of the Hartree

for the calculation of the dipole polarizability have been used. Fock exchange calculated with the KehB8ham orbitals. The

The density functional methods have already shown to yield B3LYP density functional method has already demostrated to

reasonable values of the static dipole polarizability of atdms, be a reliable method for the calculation of energies and

molecule$® and clusterd® The analytical second derivative  polarizabilities in this type of moleculé8.The excited con-

method to calculate the dipole polarizability as it is implemented figurations have been generated by orbital substitution in the

in the GAUSSIAN 98 prograff has been used. Slater determinant followed by the Kohi$ham minimization.
The hardness values have been calculated using eq 2. For

the open shell systems an average between the gaps for differer Results and Discussion

spins has been taken. This procedure has been proposed and

used by many worker$. However, there are problems in its In Table 1 the bond lengths, energies, dipole polarizabilities,

implementation which will be discussed later in this paper.  and hardness values for some diatomic molecules are shown.
The excited electronic states have been chosen to be theThey are all chosen to haveéa ground state. The bond lengths

lowest state for the particular symmetry. Hence, the validity of have been optimized for ground states, and no relaxation has
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